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Abstract. Let 𝑋 be a topological 𝐺 −space and let Ϝ௡(𝑋) be the 𝑛 −
𝑓𝑜𝑙𝑑 symmetric product of 𝑋, for any positive integer n. Let 𝑓 ∶  𝑋 →
 𝑋 be a function, we consider the induced functions Ϝ௡(𝑓): Ϝ௡(X) → 
Ϝ௡(X). In this paper we presented some chaotic properties like: 
Transitive, Mixing, Weakly Mixing, Totally Transitive, Exact, 
Strongly Transitive and Chaotic. We investigate the relationship 
between systems 𝑓 and Ϝ௡ (𝑓) for the above properties. 

 
.ʟʵالʺل    ʧȞॽجي  لʨلʨʰʱالفʹاء ال𝐗    فʹاء ʨه–    ʧؔʱجي, ولϜ𝒏 (𝑿)    بʛʹفʹاء ال

𝒇صॽʴح و مʨجʖ. لn    ʧؔʱ, ولأȑ عʙد    Xللفʹاء    nالʺʱʺاثل ذȑ الʛتॼة   ∶  𝑿 →  𝑿 
. في هʚه الʨرقة    Ϝ𝒏 (𝒇): Ϝ𝒏 (𝐗) → Ϝ𝒏 (𝐗)   :دالة سʧʺʹʱʻ دوال مʲʱʴة ǼالȞʷل  

  ,ʅॽɻʹج الʜʺج, الʜʺال ,ȑʙعʱل : الʲة مȄʨضʨاص الفʨʵال ʠعǼ رسʙض ونʛعʻة سॽʲʴॼال
 𝒇  . سʙʻرس العلاقة لهʚه الʨʵص الفʨضȄʨة بʧʽ الʙالةالʱعȑʙ الؔلي, و الفʨضȄʨة وغʛʽرها

  .Ϝ𝒏 (𝒇)والʙالة 
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1. Introduction 

The study of dynamical systems in modern mathematical fields 
has captivated numerous mathematicians. A dynamical system consists 
of multiple states linked by rules or conditions that dictate the current 
state based on preceding states. In topological dynamical systems, there 
are two classical types: discrete and continuous dynamical systems. 
Recently, numerous intriguing studies have been done on discrete 
dynamical systems of the form 𝑧௜ାଵ = 𝑓(𝑧௜), 𝑖 =  0, 1, 2, … , and f is a 
continuous self-map. A specific category of dynamical systems, known 
as chaotic dynamical systems, has been thoroughly investigated. One 
of the most active areas of mathematics is chaos theory, which has 
drawn many mathematicians because of its intriguing applications in 
many different kinds of fields, including physics, economics, and 
biology.  A complex system will be made simpler and more predictable 
by understanding this notion.  Numerous scientists define chaos theory 
according to their own definitions as (Devaney, Li-Yorke, Gualic, 
Wiggin, etc.).  However, Devaney's concept of chaos is the most widely 
accepted and strong.  Chaos theory offers whole new characteristics 
and animated maps from the standpoint of the dynamical systems 
concepts.  Chaos theory has been studied in a variety of contexts outside 
of this space domain.  Group action, set-valued mappings, iterated 
function systems, and other types of chaos have recently been developed 
and researched.  

G-space is the topic of this study, in the field of topological dynamical 
systems, offers a framework for investigating the dynamics of a group's 
action on a topological space.  By investigating G-space, researchers 
can gain insights into the behavior and properties of dynamical systems 
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under group actions, leading to a deeper understanding of the behavior 
and properties of dynamical systems under group actions, leading to a 
deeper understanding of the interaction between topology and 
dynamics in various contexts.  Furthermore, research into G-space can 
help discover new phenomena, disclose connections between many 
different areas of mathematics, and lead to the establishment of 
theoretical foundations for applications in fields such as physics, 
engineering, and biology.  In recent years, an increasing number of 
studies have turned their focus to the study of G-space. In [4], 
𝑅. 𝐷𝑎𝑠 𝑎𝑛𝑑 𝑇. 𝐷𝑎𝑠 studied transitivity in 𝐺 −space.  The condition for 
the limit function to be topologically 𝐺 −transitive is also provided.  
They identified the conditions that are required for a sequence's limit 
function of 𝐺− transitive map to be 𝐺− transitive.  In [2], R. Das defined 
the 𝐺−transitive subset for a continuous map on a compact metric 
space.  She demonstrated that a 𝐺−transitive subset of a s𝑒𝑞uence of 
continuous maps (𝑓௡) is also a 𝐺−transitive subset of the limit map (𝑓). 
In [3], R. Das investigated and explored the definitions of several 
chaotic notation for sequence mappings in metric G-space in two ways 
(iterative and successive), such as G-periodic point, G-transitive, G-
SDIC, and G-chaotic.  She additionally presented some instances of 
maps with G-chaotic sequence.  In [5], R. Das investigated and 
discussed sufficient conditions when two maps are G-chaotic and their 
product is G-chaotic, as well as the product of two 𝐺 − 𝑚𝑖𝑥𝑖𝑛𝑔 maps 
is 𝐺 − 𝑚𝑖𝑥𝑖𝑛𝑔. In [13], M. Abbas and I. ALshara'a presented some 
results and generalized the definitions of locally eventually onto, 
weakly blending, strongly blending, and touhey property maps on G-
space.  They investigated the product maps of blending (strongly and 
weakly) maps in G-space, as well as the relationships between strongly 
blending and the Touhey property with other G-space concepts.  In [8], 
M. Garge and R.Das presented and investigated certain chaotic 
properties on G-space that are stronger than forms of transitivity, such 
as totally G-transitive, weakly G-mixing, strongly G-mixing, and G-
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minimal.  They proved a few results that showed the relationship 
between these concepts.  In [9], M.Garg and R.Das investigated and 
explored G-transitivity and G-minimality maps using the notation G-
regular periodic decomposition on G-space. In [12], M. Abass and I. 
AL-Shara'a define and study the convergence of several chaotic 
properties on G-space, as well as prove some of these properties 
(minimal, blending, and mixing) of a sequence map and product on G.  
In [15], I.J. Kadhim and S.K. Jabur investigated various dynamical 
notions in G-space and analyzed the notation for Devaney's G-chaotic.  
They also defined and verified equicontinuous maps on G-space.  In 
[10], M. Garg and R.Das presented several types of map transitivity on 
G-space, such as  positive, infinite, orbital, G-ω-transitive, and G-
transitive point.  These concepts were thoroughly investigated, 
including the necessary conditions for orbit G-transitive to imply G-ω-
transitive. 

In [25], K. YAN, Q. LIU, and F. ZENG investigated various topological 
notions for group actions.  They defined the concept of scattering, mild 
mixing, and other concepts for group action, and they proved that a 
completely G-transitive with a dense collection of G-periodic points is 
weakly G-mixed.   

Historically, the development of  hyperspace theory had its beginnings 
in the early to twentieth centyry, with the stydies of F.Hausdorff  and 
L.Vietoris. The most studied hyperspaces of a compact metric space X 
are: the hyperspace 2^x  which consists of all the nonempty compact 
subsets of X; given a natural number n, the hyperspace G_n (X) 
consisting of the  elements of 2^x that have the most n components (the 
n-fold hyperspace of X); and the hyperspace H_n (X) formed by the 
elements of 2^x  which have at most n points (the n-fold symmetric 
product of X). Each of these hyperspaces is endowed with the topology 
induced by the Hausdorff measure. These hyperspaces have been 
deeply studied in continuum theory [6], [20], and [21]. 
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One line of research focuses on anlayzing the relationships between the 
dynamical system ( 𝑥, 𝑓 ) and the othere dynamical systems ( (2௫ , 2௙ ), 
(𝒢௡( 𝑋 ), 𝒢௡( 𝑓 ) ) and ( Ϝ ௡ ( 𝑋 ) , Ϝ ௡ ( 𝑓 ) ). It is clear that research 
on hyperspace dynamics has received increased attention in recent 
years, as seen [1], [7], [16], [17], [18], [19], [22], [23], and [24]. 

Several topological features of symmetric products are investigated, 
including transitivity, chaotic mixing, weakly mixing, strongly 
transitivity, and totally transitivity  

Our work focuses on the link between dynamical systems ( 𝑋, 𝑓 ) 
and (Ϝ ௡ ( 𝑋 ) , Ϝ ௡ ( 𝑓 )), where 𝑋 is 𝐺 −spa𝑐e. We present the 
definitions and preliminary information needed for section 3 in section 
2.  Using the concepts mentioned above, we examine some theorems in 
section 3 that prove the relationship between the systems  ( 𝑋, 𝑓 ) and 
(Ϝ ௡ ( 𝑋 ) , Ϝ ௡ ( 𝑓 ) ).  We give a summary of our results in section 4.   

2. Basic Definitions 
 

Let 𝐺 be a finitely generated topological group.  Let 𝑋 be the 
topological space induced by the matric space.  This section introduces 
numerous definitions that will be used to construct our results and 
properties in 𝐺 −space. 

 
Definition 𝟐. 𝟏 [14] 

Let 𝑋 be a Topological  space, 𝐺  be a topological group, and 𝜃 ∶
𝐺 × 𝑋 → 𝑋 is a mapping. The triple (𝑋, 𝐺, 𝜃) is a metric 𝐺 − space if it 
satisfies the following conditions:: 

i- 𝜃(𝑒, 𝑦) = 𝑦, for all 𝑦 ∈ 𝑋, where 𝑒 is the identity of  𝐺. 
ii- 𝜃(𝑔, 𝜃(𝑠, 𝑦)) = 𝜃(𝑔 ∗ 𝑠, 𝑦), for all 𝑦 ∈ 𝑋 and 𝑔, 𝑠 ∈ 𝐺. 
iii- 𝜃 is continuous. 
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𝑋 is referred to as a compact metric 𝐺 −space if it is compact. For 
𝑦 ∈ 𝑋,we will denoted by 𝐺௙(𝑦) to refers to the 𝐺 − 𝑜𝑟𝑏𝑖𝑡 of 𝑦, is given 
as the set {𝑔. 𝑓௞(𝑦): 𝑔 ∈ 𝐺, 𝑘 ≥ 0}. The set of all periodic points is 
denoted by 𝐺 − 𝑝𝑒𝑟(𝑓(𝑦)). For a topological G-space (𝑋, 𝜏) and 
positive integer 𝑛, the 𝑛 − 𝑓𝑜𝑙𝑑 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓  𝑋 can be 
defined as: 

𝑔. Ϝ௡(𝑋) = { 𝑔. 𝐷 ⊆ 𝑋: 𝐷 ≠  ∅ and has atmost 𝑛 elemnts} 
 

Definition 𝟐. 𝟐:  
L𝑒𝑡 (𝑋, 𝜏) b𝑒 a topological 𝐺 −space, 𝑓: 𝑋 → 𝑋 be a function,  and 

𝑛 ∈ ℕ. The function Ϝ ௡( 𝑓 ): Ϝ ௡( 𝑋 )  → Ϝ ௡( 𝑋 ) is define us:  
𝑔. Ϝ ௡ ( 𝑓 ) ( 𝐷)  =  𝑔. 𝑓 (𝐷), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐷 ∈   𝑔. Ϝ ௡ (𝑋). 

The function Ϝ ௡( 𝑓 ) is an ind𝑢𝑐𝑒d f𝑢𝑛𝑐𝑡ion by 𝑓 to the hy𝑝𝑒𝑟𝑠pace 
Ϝ௡(X) 
 
Definition 𝟐. 𝟑 [4] 

Let (X, τ) b𝑒 a topological 𝐺 −sp𝑎𝑐𝑒 and  𝑓 : 𝑋 →  𝑋 be continuous 
map. The map 𝑓  is call𝑒d 𝐺 − 𝑡𝑟ansiti𝑣𝑒 if for 𝑒𝑣ery two non−𝑒mpty 
open subsets 𝒱 and 𝒰 of 𝑋 , there is 𝑟 ∈ ℤ  such that, 

𝑔. 𝑓 
௥(𝒰) ∩   𝒱 ≠ ∅, 𝑔 ∈ 𝐺 . 

Definition 𝟐. 𝟒 [8] 
L𝑒𝑡 (𝑋, 𝜏) b𝑒 top𝑜𝑙𝑜gical 𝐺 −space and  𝑓 : 𝑋 →  𝑋 be conti𝑛𝑢𝑜𝑢s 

m𝑎𝑝. The map  𝑓  𝑖𝑠 tot𝑎𝑙𝑙y 𝐺 −trans𝑖𝑡𝑖𝑣𝑒 if 𝑓 
௦ is 𝐺-tra𝑛𝑠𝑖𝑡𝑖𝑣e for 

every 𝑠 >  1. 
 
Definition 𝟐. 𝟓 

L𝑒𝑡 (𝑋, 𝜏) be to𝑝𝑜𝑙𝑜gical 𝐺 −space and  𝑓 : 𝑋 →  𝑋 be continuous 
map. The map 𝑓  is strongly 𝐺 −tra𝑛𝑠𝑖𝑡𝑖ve if for each non−empty 𝒱 
op𝑒𝑛 𝑠𝑢𝑏set of  𝑋, there is  𝑟 ∈ ℕ and  𝑔 ∈ 𝐺 su𝑐ℎ that  

𝑋 = ራ  𝑔.

௥

௞ୀ଴

𝑓  
௞( 𝒱) 
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Definition 𝟐. 𝟔 [8] 
L𝑒𝑡 (𝑋, 𝜏) be topological 𝐺 −sp𝑎𝑐𝑒 and  𝑓 : 𝑋 →  𝑋 be conti𝑛𝑢𝑜𝑢s 

m𝑎𝑝. The map 𝑓  is 𝐺 −mixing if for each two  𝑛𝑜𝑛-empty open subsets   
𝒱 a𝑛𝑑 𝒰 of 𝑋, th𝑒𝑟𝑒 is 𝑚 ∈ ℕ  and 𝑔 ∈ 𝐺 su𝑐ℎ 𝑡ℎat for each 𝑘 ≥  𝑚 
satisfying 

𝑔. 𝑓 
௞(𝒰)  ∩   𝒱 ≠ ∅. 

 
Definition 𝟐. 𝟕 [8] 

Let (𝑋, 𝜏) be topological 𝐺 −sp𝑎𝑐𝑒 𝑎𝑛d  𝑓 : 𝑋 →  𝑋 be conti𝑛𝑢𝑜𝑢s 
map. The map  𝑓  is ca𝑙𝑙𝑒d weakly 𝐺 −mixing if the Cartesian product  

𝑔. 𝑓  × 𝑔. 𝑓  is 𝐺 ×  𝐺-transitive. In other words, for any open sets 
𝒰, 𝒱, 𝑊  and 𝑌  nonempty of 𝑋, such that  𝒰 ×  𝒱 and 𝑊 ×  𝑌 are 
open subsets of  𝑋 ×  𝑋 then  there is 𝑘 ∈ 𝑛 𝑎𝑛𝑑 (𝑝, 𝑞) ∈  𝐺 ×  𝐺 

(𝑔, ℎ)( 𝑓  × 𝑓 )
௞  (𝒰 ×  𝒱) ∩  𝑊 ×  𝑌 ≠ ∅ . 

 
 
Definition 𝟐. 𝟖  

𝐿𝑒𝑡 (𝑋, 𝜏) 𝑏e topological 𝐺 −space and  𝑓 : 𝑋 →  𝑋 be continuous 
map. The map  𝑓  is 𝐺 −lo𝑐𝑎𝑙𝑙y everywhere onto ( simple 𝐺 − 𝑙. 𝑒. 𝑜) if 
f𝑜𝑟 all no𝑛𝑒𝑚pty sub𝑠𝑒t 𝒰 of  𝑋, there is 𝑘 ∈  𝛮 and 𝑔 𝜖 𝐺 sucℎ 𝑡ℎat   

𝑔. 𝑓 
௞(𝒰) = 𝑋 . 

 
Definition 𝟐. 𝟗  

Let (𝑋, 𝜏) be t𝑜𝑝𝑜𝑙ogical 𝐺 −spa𝑐𝑒 and  𝑓 : 𝑋 →  𝑋 be conti𝑛𝑢𝑜𝑢s 
map. The map  𝑓  is 𝐺 − 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 if it is 𝐺 −tra𝑛𝑠𝑖𝑡𝑖ve and 𝐺 − 𝑝𝑒𝑟(𝑓) 
i𝑠 dense in 𝑋. 

 
 

3. Some properties and theorems  
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Given a  finite collection of nonempty subsets 𝒰 1, … , 𝒰k of 𝑋, 
w𝑒 define us ⟨ 𝒰 1, … , 𝒰k⟩𝑛  the subset of Ϝ௡(𝑋): { 𝐷 ∈  Ϝ௡(𝑋) ∶
 𝐷 ⊆  ⋃ 𝒰௜

௞
௜ୀଵ  𝑎𝑛𝑑 𝐷 ∩  𝒰𝑖 ≠  ∅, for each 𝑖 ∈ {1, … , k} }.  

The collection  𝔅, define by 

𝔅 ={⟨ 𝒰  1, … , 𝒰  k⟩𝑛 , 𝒰  𝑖 ∈ 𝜏, 𝑖 =1, … , k and k ∈ ℕ}, 
Serves a base genrating a to𝑝𝑜logy on ℋ௡(X), this topology is referred to as 
the 𝑉𝑖𝑒𝑡𝑜𝑟𝑖𝑠 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 whicℎ is denote𝑑 by 𝜏V . The the next result, which 
appearsin [11, 𝐿𝑒𝑚𝑚𝑎 4.2]. 

 
 

𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟏: 𝐿et (𝑋 , 𝜏 )𝑏𝑒 a topological 𝑠pace and let 𝑛 ∈  ℕ. 
𝑇ℎ𝑒𝑛  

𝔅 ′= {⟨ 𝒰 1, … , 𝒰 k⟩𝑛  , 𝒰 𝑖  ∈ 𝜏, for all 𝑖 ∈  {1, … , 𝑘}} 
is a base for the Vietoris topology 𝜏𝑉 on Ϝ௡(𝑋 ).  

 
𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟐: 𝐿𝑒𝑡 𝑋 be a  𝐺 − space, let 𝑓 ∶ 𝑋 → 𝑋 be a function 
and let 𝑛 ∈ ℕ. Then Ϝ௡(𝑓 ) is 𝐺 −mixing  if and only if 𝑓 is 𝐺 −mixing.  
 
𝑃𝑟𝑜𝑜𝑓 : Let as assume that Ϝ௡(𝑓 ) is 𝐺 −mixing. We will show that 𝑓 is 
G-mixing, let 𝒰 and 𝒱 be subsets of 𝑋 that are open. There are open 
subsets ⟨𝒰⟩n and ⟨𝒱⟩n of Ϝ௡ (𝑋). Since Ϝ௡ (𝑓 ) is 𝐺 −mixing, there 
i𝑠 ℵ ∈  ℕ such that, 

𝑔௡.[Ϝ௡ (𝑓 )]r(⟨𝒰⟩𝑛) ∩ ⟨𝒱⟩𝑛 ≠  ∅, 
for each 𝑟 ≥  ℵ and 𝑔௡ ∈ 𝐺 .We show that for 𝑎𝑙𝑙 𝑟 ≥  ℵ, 

𝑔௡.𝑓 ௥(𝒰)  ∩  𝒱 ≠ ∅. 
 
Let r ≥ ℵ ,Since 

𝑔௡.[Ϝ௡ (𝑓 )]r(⟨𝒰 ⟩𝑛) ∩ ⟨ 𝒱 ⟩𝑛 ≠ ∅, for all 𝑔௡ ∈ 𝐺 
there is 𝐵 ∈ ⟨ 𝒰⟩𝑛  such that 

𝑔௡.[Ϝ௡ (𝑓 )]r(𝐵) ∈ ⟨ 𝒱 ⟩𝑛. 
Thus, 𝐵 ⊂  𝒰 𝑎𝑛𝑑 𝑔௡.𝑓r(𝐵) ⊆ 𝒱. 
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 Then, 
𝑔௡.𝑓r(𝒰) ∩ 𝒱 ≠ ∅. for all 𝑔௡ ∈ 𝐺 

Th𝑒𝑟𝑒𝑓ore, 𝑓 is 𝐺 − mi𝑥𝑖𝑛g.  
We then show that Ϝ௡ (𝑓 )  is G-mixing, assuming that f is G-mixing. 
Let 𝒰 𝑎𝑛𝑑 𝑉 b𝑒 𝑛onempty ope𝑛 𝑠ubsets of Ϝ௡ (𝑋). Then, 
𝑏𝑦 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 (3.1), ther𝑒 𝑖𝑠 𝑛onempt𝑦 𝑜pen subsets 𝒰 1, … , 𝒰 𝑛,   𝒱1, 
… , 𝒱𝑛 of 𝑋 and  𝑔ଵ , . . ., 𝑔௡ of 𝐺 such that ⟨𝒰, … , 𝒰𝑛⟩𝑛 ⊆  𝒰 , 
⟨ 𝒱1, … , 𝒱𝑛⟩𝑛 ⊆ 𝒱 and ⟨ 𝑔ଵ ,... , 𝑔௡ ⟩𝑛 ⊆ 𝐺. Since 𝑓 is 𝐺 −mixing, for all 
𝑖 ∈ {1, … , 𝑛}, there is ℵ𝑖 ∈  ℕ such that  

𝑔௜ .𝑓r(𝒰 𝑖) ∩ 𝒱 𝑖 ≠ ∅, for all r ≥ ℵ𝑖 and 𝑔௜ ∈ 𝐺. 
Let ℵ = max{ℵ1, … , ℵ𝑛}. Note that, 

𝑔௜ .𝑓r(𝒰 𝑖) ∩ 𝒱 𝑖 ≠ ∅, for all r ≥ ℵ and  𝑔௜ ∈ 𝐺. 
Hence, for all 𝑖 ∈ {1, … , 𝑛}, let y𝑖 ∈ 𝒰 𝑖  such that 

𝑔௜ .𝑓r(y𝑖) ∈ 𝒱 𝑖. 
Let C = {y1, … , y𝑛}. Observe that C ∈ ⟨ 𝒰 1, … , 𝒰 𝑛⟩𝑛 and 

𝑔௜ .[Ϝ௡ (𝑓 )]r(C ) ∈ ⟨ 𝒱 1, … , 𝒱 𝑛⟩𝑛, 𝑔௜ ∈ 𝐺 
Thus, 

𝑔௜ . [Ϝ௡ (𝑓 )]r(𝒰 ) ∩ 𝒱 ≠ ∅, 𝑔௜ ∈ 𝐺 
Hence, for all r ≥ ℵ, 

𝑔௜ .[Ϝ௡ (𝑓 )]r(𝒰) ∩ 𝒱 ≠ ∅, 𝑔௜ ∈ 𝐺 
Therefore, Ϝ௡ (𝑓 ) is 𝐺 −mixing.                                                                           

   □  
 
𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟑 ∶  𝐿et 𝑋 𝑏e a 𝐺 − spa𝑐e, l𝑒t 𝑓 ∶  𝑋 →  𝑋 be a 
functio𝑛 and let 𝑛 ∈  ℕ. Then Ϝ௡ (𝑓) is 𝐺 −l.e.o if 𝑎𝑛𝑑 𝑜nly if 𝑓 is 
𝐺 −l.e.o.  
 
𝑃𝑟𝑜𝑜𝑓 : Let as assume that Ϝ௡(𝑓 ) is 𝐺 −l.e.o.. We will show that 𝑓 
𝑖𝑠 𝐺 −  𝑙. 𝑒. 𝑜.. Le𝑡 𝒰 be a 𝑛onempty open subset of Ϝ௡ (𝑋). Then, 
by Theorem (3.1), ther𝑒 𝑖𝑠 𝒰1, … , 𝒰𝑛 nonempty open subset𝑠  of 
𝑋 𝑠𝑢𝑐ℎ that ⟨ 𝒰1, … , 𝒰 𝑛⟩𝑛 ⊆ 𝒰 . Since 𝑓 is 𝐺 − 𝑒𝑥𝑎𝑐𝑡, there is r1, … , 
r𝑛 ∈ ℕ such that, 
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𝑔. 𝑓௥೔(𝒰 𝑖) = 𝑋, for all 𝑔 ∈ 𝐺. 
Let r = max{r1, … , r𝑛}. Since 𝑓 is 𝐺 −l.e.o., we conclude that 𝑓 is 
surjective. Thus, 

𝑔.𝑓r(𝒰 𝑖) = 𝑋, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈  {1, … , 𝑛} 𝑎𝑛𝑑 𝑔 ∈ 𝐺. 
Now, we show that:   

 𝑔. Ϝ௡ (𝑋) ⊆ 𝑔.[Ϝ௡ (𝑓 )]𝑘(⟨𝒰 1, … , 𝒰 𝑛⟩𝑛) , 𝑔 ∈ 𝐺. 
Let S = {s1, … , s𝑟 } ∈ Ϝ௡ (𝑋), with 𝑡 ≤  𝑛. Define 𝐶 = {s1, … , st, st+1, 
… , s𝑛}, where st = st+1 = ⋯ = s𝑛. Then, for all 𝑖 ∈  {1, … , 𝑛},  

s𝑖 ∈ 𝑋 =  𝑔.𝑓𝑘(𝒰 𝑖), 𝑔 ∈ 𝐺. 
Thus, for each 𝑖 ∈  {1, … , 𝑛}, there is ℴ𝑖 ∈ 𝒰 𝑖 such that  

𝑔.𝑓𝑘(ℴ𝑖) = s𝑖, 𝑔 ∈ 𝐺. 
Let D = {d1, … , d𝑛}. Then 𝐴 ∈ ⟨ 𝒰 1, … , 𝒰 𝑛⟩𝑛 and 

𝑔.[Ϝ௡ (𝑓)]𝑘(D) = 𝐶 = S.  
Thus, 

S ∈ 𝑔.[Ϝ௡ (𝑓 )]𝑘(⟨𝒰 1, … , 𝒰 𝑛 ⟩ 𝑛). 
Hence,  

𝑔. Ϝ௡ (𝑋) =𝑔.[Ϝ௡ (𝑓 )]𝑘(⟨𝒰 1, … , 𝒰 𝑛⟩𝑛). 
Therefore,  

𝑔. [Ϝ௡ (𝑓 )]𝑘(𝒰 ) = 𝑔. Ϝ௡ (𝑋), 𝑔 ∈ 𝐺. 
Thus,  

𝑔.𝑓𝑘(𝒰 ) = 𝑋, 𝑔 ∈ 𝐺. 
so, 𝑓 is 𝐺 −l.e.o. .  

□ 
 
𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟒: 𝐿et 𝑋 be a 𝐺 −space, let 𝑓 ∶  𝑋 →  𝑋 be a function 
and let 𝑛 ∈  ℕ. If Ϝ௡ (𝑓 ) is 𝐺 −transi𝑡ive, the𝑛 𝑓 is 𝐺 −tra𝑛𝑠itive.  
 
𝑃𝑟𝑜𝑜𝑓 : Let as assume that Ϝ௡(𝑓 ) is 𝐺 − tra𝑛𝑠itive. We will show that 
𝑓 is 𝐺 − tra𝑛𝑠itive. Let 𝒰 𝑎𝑛𝑑 𝒱 be nonempty, open su𝑏𝑠ets of 𝑋. 
The𝑛 ⟨𝒰⟩𝑛 𝑎𝑛𝑑 ⟨𝒱⟩𝑛 are none𝑚pty open sub𝑠𝑒ts of Ϝ௡ (𝑋). Since Ϝ௡ 
(𝑓 ) is 𝐺 −transitive, there 𝑒𝑥𝑖𝑠𝑡𝑠 𝑟 ∈  ℕ such tℎ𝑎t, 

𝑔. [Ϝ௡ (𝑓 )]r(⟨𝒰 ⟩𝑛) ∩ ⟨ 𝒱 ⟩𝑛 ≠ ∅, 𝑔 ∈ 𝐺. 
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Thus, there is 𝐷 ∈ ⟨ 𝒰 ⟩𝑛  such that  
𝑔.[Ϝ௡ (𝑓 )]r(𝐷)  ∈  ⟨ 𝒱 ⟩𝑛 , 𝑔 ∈ 𝐺. 

This implies that, 
𝑔.𝑓r(𝒰) ∩ 𝒱 ≠ ∅, 𝑔 ∈ 𝐺. 

Therefore, 𝑓 is 𝐺 −transitive.  
□  

 
THEOREM 3.5: 𝐿et 𝑋 be a 𝐺 −space, let 𝑓 ∶  𝑋 →  𝑋 be a function 
and le𝑡 𝑛 ∈  ℕ. If Ϝ௡ (𝑓 ) is weakly 𝐺 −mixing, the𝑛 𝑓 is wea𝑘ly 
𝐺 −mixi𝑛g.  
 
𝑃𝑟𝑜𝑜𝑓 :assume that Ϝ௡ (𝑓 ) is wea𝑘ly 𝐺 −mixing, we  can conclude 
that  𝑓 is weakly 𝐺 −mixing. Le𝑡 𝒰1,𝒰, 𝒱1 and 𝒱2 are nonempty open 
subsets of 𝑋. Then ⟨ 𝒰 1⟩𝑛, ⟨ 𝒰 2⟩𝑛, ⟨ 𝒱 1⟩𝑛 and ⟨ 𝒱 2⟩𝑛 

are nonempty open 𝑠ubsets of Ϝ௡(𝑋) and (𝑔, ℎ) ∈ 𝐺 × 𝐺. Since Ϝ௡ (𝑓 ) 
is weakly 𝐺 −mi𝑥ing, th𝑒𝑟e exists 𝑟 ∈  ℕ such tℎat,  

(𝑔, ℎ).[Ϝ௡ (𝑓 )]r(⟨𝒰 𝑖⟩𝑛) ∩ ⟨ 𝒱 𝑖⟩𝑛 ≠ ∅, 
for each 𝑖 ∈ {1, 2} and (𝑔, ℎ) ∈ 𝐺 × 𝐺. 
i.e,  

𝑔.[Ϝ௡ (𝑓 )]r(⟨𝒰 1⟩𝑛) ∩ ⟨ 𝒱1⟩𝑛 ≠ ∅ , 𝑔 ∈  𝐺 
and  

ℎ.[Ϝ௡ (𝑓 )]r(⟨𝒰 2⟩𝑛) ∩ ⟨ 𝒱2⟩𝑛 ≠ ∅, ℎ ∈  𝐺. 
Then there exist elements 𝐵1 ∈ ⟨ 𝒰 1⟩𝑛 and 𝐵2 ∈ ⟨ 𝒰 2⟩𝑛 such that 

𝑔.[Ϝ௡ (𝑓 )]r(𝐵1) ∈ ⟨ 𝒱1⟩𝑛
  , 𝑔 ∈  𝐺 

 and 
ℎ.[Ϝ௡ (𝑓 )]r(𝐵2) ∈ ⟨ 𝒱2⟩𝑛

  , ℎ ∈  𝐺. 
Thus, we obtain that 

𝑔. 𝑓r(𝐵1) ⊆ 𝒱1 and ℎ. 𝑓r(𝐵2) ⊆ 𝒱2 , 𝑓𝑜𝑟 𝑎𝑙𝑙𝑔, ℎ ∈  𝐺 
Hence, 

𝑔. 𝑓r(𝒰 1) ∩ 𝒱 1 ≠ ∅, and ℎ. 𝑓r(𝒰 2) ∩ 𝒱 2 ≠ ∅. 𝑓𝑜𝑟 𝑎𝑙𝑙𝑔, ℎ ∈  𝐺 
Thus, 

( 𝑔, ℎ ). (𝑓 × 𝑓 ) r(𝒰 1×  𝒰 2) ∩ (𝒱 1×  𝒱2 )≠ ∅, ( 𝑔, ℎ ) ∈ 𝐺 × 𝐺. 
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Therefore, 𝑓 is weakly 𝐺 −mixing. 
 □  

𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟔: 𝐿et 𝑋 be a topological space, 𝑓 ∶  𝑋 →  𝑋 𝑏e a 
fun𝑐tion and 𝑛 ∈  ℕ. If Ϝ௡ (𝑋) is 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝐺 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒, the𝑛 𝑓 is 
𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝐺 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒.  
 
𝑃𝑟𝑜𝑜𝑓 ∶  Assume that Ϝ௡ (𝑓 ) is totally 𝐺 −transitive, we s𝑒e tha𝑡 𝑓 is 
𝑡𝑜tally 𝐺 −tra𝑛sitive. L𝑒t 𝑡 ∈  ℕ. We prove that 𝑓௦  is 𝐺 −tran𝑠itive. 
Let 𝒰𝑎𝑛𝑑 𝒱 be non−𝑒mpty ope𝑛 subsets of  𝑋. Then ⟨𝒰⟩𝑛  and ⟨𝒱⟩𝑛 are 
open sub𝑠ets of Ϝ௡ (𝑋) and nonempty. Since 𝑔. Ϝ௡ (𝑓) is totally 
𝐺 −transitive,then 𝑔.[Ϝ௡ (𝑓 )]s is 𝐺 −transitiv𝑒. Thus, there is 𝑟 ∈
 ℕ such that 

𝑔.([Ϝ௡ (𝑓 )]s)r(⟨𝒰 ⟩𝑛) ∩ ⟨ 𝒱⟩𝑛 ≠ ∅, for all 𝑔 ∈ 𝐺 
 i.e.,  

𝑔.[Ϝ௡ (𝑓 )]sr(⟨𝒰 ⟩𝑛) ∩ ⟨ 𝒱 ⟩𝑛 ≠ ∅, 𝑔 ∈ 𝐺. 
Then there is W ∈ ⟨ 𝒰 ⟩𝑛  such that, 

𝑔.[Ϝ௡ (𝑓 )]sr(W) ∈ ⟨ 𝒱 ⟩𝑛, 𝑔 ∈ 𝐺. 
Hence, 

𝑔.𝑓 sr (W) ⊆ 𝒱. 
Thus, 

𝑔.(𝑓s)r(𝒰) ∩ 𝒱 ≠ ∅, 𝑔 ∈ 𝐺. 
Thus, 𝑓s is 𝐺 −tra𝑛sitive. Since 𝑠 is any positive integer, 𝑓 is 𝑡𝑜tally 
𝐺 −tran𝑠itive. 

 □  
 

𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟕: 𝐿et 𝑋 be a topological space, let 𝑓 ∶  𝑋 →  𝑋 be a 
function and let 𝑛 ∈  ℕ. If Ϝ௡ (𝑓 ) is strongly 𝐺 −transitive, the𝑛 𝑓 is 
str𝑜𝑛gly 𝐺 −tra𝑛sitive.  
𝑃𝑟𝑜𝑜𝑓 : assume  that Ϝ௡ (𝑓 ) is str𝑜𝑛gly 𝐺 −tra𝑛sitive, we show 𝑡ℎ𝑎𝑡 𝑓 
is strongly 𝐺 −transitive. Let 𝒰 is open subset of 𝑋 and nonempty. Then 
⟨ 𝒰⟩𝑛 is open subset of Ϝ௡(𝑋) and nonempty . Thus, according to 
hypothesis, there is an 𝑠 ∈  ℕ such that:  
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𝑔. Ϝ௡(𝑋)=  ⋃௞ୀ଴
௦ 𝑔.[Ϝ௡(𝑓)]𝑘(⟨𝒰 ⟩𝑛), 𝑔 ∈ 𝐺 

 
We prove that 

𝑋 =  ⋃௞ୀ଴
௦ 𝑔. 𝑓𝑘(𝒰), 𝑔 ∈ 𝐺. 

Let 𝑥 ∈ 𝑋. We prove that  
ℓ ∈  ⋃௞ୀ଴

௦
 𝑔. 𝑓𝑘(𝒰) , 𝑔 ∈ 𝐺. 

Note that {ℓ} ∈ Ϝ௡ (𝑋). Thus, 
{ℓ} ∈  ⋃௞ୀ଴

௦
  𝑔.[Ϝ௡ (𝑓 )]𝑘(⟨𝒰 ⟩𝑛), 𝑔 ∈ 𝐺. 

Then there exists 𝑘0 ∈ {0, … , 𝑠} such that  
{ℓ} ∈ 𝑔.[Ϝ௡ (𝑓 ) ]௞బ (⟨𝒰⟩𝑛), 𝑔 ∈ 𝐺. 

Hence, there exists 𝛢∈ ⟨𝑈⟩𝑛 such that 
𝑔.[Ϝ௡ (𝑓 )]௞బ(𝛢) = {ℓ} 𝑔 ∈ 𝐺. 

Since 𝛢 ⊆ 𝑈, 
ℓ ∈ ⋃௞ୀ଴

௦
  𝑔.𝑓𝑘(𝒰) , 𝑔 ∈ 𝐺. 

Thus, 
𝑋 ⊆  ⋃௞ୀ଴

௦
 𝑔.𝑓𝑘(𝒰), 𝑔 ∈ 𝐺. 

Therefore, 𝑓 is strongly 𝐺 −transitive. 
     □  

 
𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟖: Let 𝑋 be a 𝐺 −space, let 𝑓 ∶  𝑋 →  𝑋 be a function 
and let 𝑛 ∈  ℕ. The set 𝐺-𝑃𝑒𝑟(𝑓 ) is a den𝑠e subset in 𝑋 if and o𝑛ly if 
𝐺 −𝑃𝑒𝑟(Ϝ௡ (𝑓 )) is a dens𝑒 subset in Ϝ௡ (𝑋).  

 
𝑻𝑯𝑬𝑶𝑹𝑬𝑴 𝟑. 𝟗: 𝐿et 𝑋 be a 𝐺 −space, let 𝑓 ∶  𝑋 →  𝑋 be a function 
and let 𝑛 ∈  ℕ. If  Ϝ௡ (𝑓 ) is 𝐺 −chaotic, the𝑛 𝑓 is 𝐺 −cha𝑜𝑡ic.  
 
Proof: We show that 𝑓 is 𝐺 −chaotic if we assume that Ϝ௡ (𝑓 ) is 
𝐺 −chaotic. Given that Ϝ௡(𝑓) is 𝐺 −chaotic, 𝐺 − 𝑃𝑒𝑟(Ϝ௡ (𝑓 )) is 
d𝑒𝑛se in Ϝ௡ (𝑋)and  Ϝ௡ (𝑓 ) is 𝐺 −transitive . Then, by Theorem (3.4), 
we have that 𝑓 is 𝐺 −tra𝑛sitive. Furthermore, by Theo𝑟𝑒m (3.9), we 
ob𝑡ain that 𝐺 − 𝑃𝑒𝑟(𝑓 ) is a dense subset of 𝑋. Consequently, 𝑓 is 
𝐺 −chaotic. 
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 □  

4. conclusion  
First, we present some important studies regarding some of 

the chaotic concepts and characteristics found in literature.  
Second, in order to prove our theorems, we presented definitions 
for several chaotic concepts in G-space.  Specifically, we study 
their dynamic properties in 𝐺 −space between dynamical systems         
(X,𝑓) and (Ϝ ௡ ( 𝑋 ) , Ϝ ௡ ( 𝑓 )  ), such as mixing, l.e.o, transitive, 
weakly mixing, strongly transitive, and chaotic.   So, the following 
is a summary of our work: 
 
Ϝ ௡ ( 𝑓 )  𝐺 −mixing              𝑓  𝐺 −mixing  
Ϝ ௡ ( 𝑓 )  𝐺 −l.e.o                𝑓  𝐺 −l.e.o  
Ϝ ௡ ( 𝑓 )  𝐺 −transitive             𝑓  𝐺 −transitive  
Ϝ ௡ ( 𝑓 )  weakly 𝐺 −mixing             𝑓  weakly 𝐺 −mixing  
Ϝ ௡ ( 𝑓 )  totally 𝐺 −transitive             𝑓 totally 𝐺 −transitive 
Ϝ ௡ ( 𝑓 )  strongle 𝐺 −transitive              𝑓  strongle 𝐺 −transitive 
Ϝ ௡ ( 𝑓 )  𝐺 −chaotic             𝑓  𝐺 −chaotic  
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